Preventing Meaningless Stock Time Series Pattern Discovery by Changing Perceptually Important Point Detection
نویسندگان
چکیده
Discovery of interesting or frequently appearing time series patterns is one of the important tasks in various time series data mining applications. However, recent research criticized that discovering subsequence patterns in time series using clustering approaches is meaningless. It is due to the presence of trivial matched subsequences in the formation of the time series subsequences using sliding window method. The objective of this paper is to propose a threshold-free approach to improve the method for segmenting long stock time series into subsequences using sliding window. The proposed approach filters the trivial matched subsequences by changing Perceptually Important Point (PIP) detection and reduced the dimension by PIP identification.
منابع مشابه
Stock time series pattern matching: Template-based vs. rule-based approaches
One of the major duties of financial analysts is technical analysis. It is necessary to locate the technical patterns in the stock price movement charts to analyze the market behavior. Indeed, there are two main problems: how to define those preferred patterns (technical patterns) for query and how to match the defined pattern templates in different resolutions. As we can see, defining the simi...
متن کاملUsing Dynamic Time Warping to Find Patterns in Time Series
Knowledge discovery in databases presents many interesting challenges within the ¢onte~t of providing computer tools for exploring large data archives. Electronic data .repositories are growing qulckiy and contain data from commercial, scientific, and other domains. Much of this data is inherently temporal, such as stock prices or NASA telemetry data. Detect£ug patterns in such data streams or ...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کامل(Not) Finding Rules in Time Series: A Surprising Result with Implications for Previous and Future Research
Time series data is perhaps the most frequently encountered type of data examined by the data mining community. Clustering is perhaps the most frequently used data mining algorithm, being useful in it’s own right as an exploratory technique, and also as a subroutine in more complex data mining algorithms such as rule discovery, indexing, summarization, anomaly detection, and classification. Giv...
متن کاملAn Association between Bid Series and Transaction Price Facilitating Trading Decision Making Based on VPIP Algorithm
The stock price has long been an essential issue in stock market analysis, while rarely had any relevant study covered the relational effect of the bidder factor on stock price. Hereby we try to find an association between bid and transaction price time series. The fluctuation of pattern ratios embedded in the bid series affects the fluctuation of transaction price. That means when there is sma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005